
Bank of America / Merrill Lynch
Summer Analyst Program

Glen Oakley

June 4 – Aug 10, 2012

Abstract

Bank of America is a multinational banking and financial services corporation,
providing consumer, corporate, and investment operations for its clients. Bank of
America strives to be a technology leader in the banking industry, and thus have a
heavy focus on technological growth and development. I spent 10 weeks with the
company’s Global Wealth and Investment Technologies division, learning about the
kinds of technology Bank of America leverages to secure itself as one of the largest
companies in the United States. This article summarizes my experiences and knowledge
gained from this opportunity.

Contents

1 Bank of America & Merrill Lynch 2
1.1 History . 2
1.2 Structure . 3
1.3 Culture . 4

2 “Briefcase” 5
2.1 Mobile Development Platform . 5
2.2 Wealth Management Workstation . 8
2.3 Product Design . 9
2.4 Programming . 11

3 ML Exchange (OSQA) 13
3.1 OSQA . 14
3.2 Authentication . 14

4 UI Automation 16

1

5 Community 18
5.1 Summer Intern Programs . 18
5.2 Lunch ’n Learn . 19
5.3 Internship Presentation . 20

6 Conclusion 20

1 Bank of America & Merrill Lynch

1.1 History

The history of Bank of America dates back to 1904, when it was knows as the California-

based Bank of Italy. By the time it became known as “Bank of America” in 1930 through a

series of consolidations, the organization was well on its way to become the largest banking

institution in the country. From there, the bank started a national expansion that continues

up to this day, quickly rising to the top through a series of mergers and acquisitions. One of

the more recent and notable mergers occurred in late 2008; the purchasing of Merrill Lynch

& Co., Inc. [1]

Merrill Lynch was also a long-standing financial company, getting its start in 1914. It

relied on its strong brokerage divisions to bring success and profits. However, due largely

in part to the 2007 subprime mortgage financial crisis, Merrill Lynch began posting heavy

quarterly losses. For a number of strategic reasons beyond the scope of this article, Bank

of America entered talks to purchase Merrill Lynch, which led to the purchase of the latter

company for $38B, effectively saving it from bankruptcy. [4]

After the merger of these two powerhouse financial institutions, Bank of America began

to rebrand all of its corporate and investment banking activities under the name “Bank of

America Merrill Lynch”. This has become the corporate and investment banking division of

Bank of America. [2]

2

1.2 Structure

Bank of America prides itself on being a leader in technology for the banking and finance

industries. While there is no official measure of this, the company has been implementing

many features in all facets of business.

On the consumer side, the bank has been pushing features to the public that are intended

to make the banking experience easier. An example of such a feature is the ability to deposit

a check by taking a picture of it from a smartphone. The bank realizes that, in addition to

making the banking experience easier for consumers, their technological prowess could also

attract new, more technologically-savvy customers from the younger generation (who may

not yet have loyalty to any one bank). I had little interaction with consumer business and

technology, and thus cannot provide more detail on the consumer experience.

Internally, however, Bank of America Merrill Lynch is attempting to provide its finan-

cial associates with a vast array of tools designed to make the job of every employee in the

investment and financial sectors excel at their jobs. In a way, for the technologists who

work directly with software development, it’s a sort of ‘think tank’ for business and financial

technology. The Global Wealth and Investment Management Technologies (GWIM Tech, re-

ferred to here as “GWIM”) division in particular is geared toward creating solid applications

that can be used throughout the entire company. GWIM has created many applications that

support a multitude of platforms. Some of these applications will be described later in this

article.

The GWIM division of Bank of America Merrill Lynch is further subdivided into more

specific teams and divisions. Each team focuses on a specific facet of development. The

team I was assigned to is categorized under “Mobile Application Development”. The Mobile

Development division itself has hundreds of employees. My specific work was with the iPad

Development team. There are relatively few people who work on this team (about five or

six). The team’s jobs involve working directly with iOS and its hardware; writing code for

3

the iPad and running test cases on devices are two examples of expected tasks for the team.

The iPad team (as well as a few other teams) is managed by James Rajeshvincent, who was

my hiring manager for the summer.

1.3 Culture

My work took place at the Hopewell Branch of Bank of America Merrill Lynch. This 450-

acre complex of offices was originally held by Merrill Lynch as a major office space (1.7M

sq. feet). Due to budgetary constraints, the campus is in the process of being sold off. [3]

A few of the building are already clearing out, displacing many Bank of America Merrill

Lynch employees. Similarly, while I was working there, a few of the buildings (not the one

I occupied) were experiencing layoffs related to the downsizing of the campus. It was easy

to tell that feelings amoung employees were mixed. In particular, employees in my building,

including my team and manager, seemed unconcerned about the safety of jobs in the Mobile

Development division.

My work took place in Building 1300 (one of about 10 buildings), on Floor 2. Most of the

people I was around worked either on Mobile Development or on the Mainframe system for

the bank. The mobile developers are divided up into different teams, including web services,

backend development, UI design, and database management.

The team I was stationed with and interacted the most with was the iPad Development

team. At the Hopewell site, the team mainly consists of four other employees (one of which

who is actually a long-term consultant). There is, however, an off-site team stationed in

India that is also considered part of the iPad team. In order to stay in sync, our two groups

would have a private teleconference every weekday at 9:30AM (appx. 7:00PM India Standard

Time).

I was mildly surprised by the diversity (or perhaps lack thereof) at the bank. My entire

building consisted of people from all over the globe, including Americans, Taiwanese, Indians,

4

Latin Americans, and Europeans. In the microcosm of those I worked directly with, however,

I found the area to be dominated by those of Indian nationality. In fact, my manager, three

of the four people I worked directly with (the fourth was Taiwanese), and a large number

of people on Mobile Development that I interacted with were all natives of India. At first,

it was a bit intimidating being one of the few Caucasians that I interacted with on a daily

basis, but this gave me the opportunity to learn a lot about the culture of India (which,

unfortunately, includes a Monday-Friday 9/5 work week).

As Bank of America is a gigantic, multinational business, the company culture varies

between divisions and locations. The experience I had may not reflect the diversity in other

divisions. During my training, I was told that Bank of America has a very diverse culture,

and the bank supports a number of cultural-oriented groups, i.e. a LGBT group and an Asian

group. I could tell that Bank of America Merrill Lynch definitely cares about its employees,

and works to make sure their environment is very conducive to creating a supportive and

productive work environment.

2 “Briefcase”

When I arrived at Bank of America Merrill Lynch, the Mobile Development division was al-

ready planning a new application for the iPad, nicknamed “Briefcase”. Because the proposal

was so new, I was able to view much of the development process, which I have outlined in

the following sections.

2.1 Mobile Development Platform

Bank of America Merrill Lynch has been utilizing mobile devices ever since the division’s

creation through the Bank of America / Merrill Lynch merger. These applications were

written with the financial advisor in mind, and thus were mostly financial and business

5

applications. Applications were originally designed for Blackberry smart phones, as that

was the predominant business device in use at the time. More recently, Apple’s market

share in the business sector has been increasing, due to a phenomenon referred to as “Bring

Your Own Device” (BYOD).

BOYD replaces the old model of distributing computing hardware to employees. With the

old model, employees would be given a laptop, phone, and/or PDA selected and approved

by the company, and would be expected to always utilize those devices for work-related

business. This made it easy for the company to support its own technology, as they had

control over what their employees used. The recent trend in BYOD replaces this old model;

BYOD allows employees to bring company-approved devices that they already own into their

work environment, and use them as business devices as well as personal devices. Businesses

like this new policy because it allows them to save money on high-end devices that would

otherwise have to be purchased for employees. Employees also like this, as they can choose

(to some extent) what device they want to use, and will most likely already be familiar

with how to use their device. This also allows the company to utilize newer technologies,

as employees are likely to purchase a newer device for themselves that they can then use at

work. [5]

In response to the BYOD policy, the Mobile Development division set out to build their

own platform on top of the platforms that already exist on mobile devices. The first devices

to be targeted were iOS devices, in particular the iPad series of devices. The task of creating

the platform itself was sent to the Mobile Framework team.

A large consideration when building the platform was security risks. In addition to

standard company security issues, Bank of America has to meet government compliance

requirements and laws that apply to financial and investment institutions. This includes

documenting all transactions between employees and outside parties (an advisor and their

clients, consultants, etc). A document or email leaking out of an application could have

6

disastrous consequences, so the platform was developed around the idea of ‘containers’.

Figure 1: The theory behind containers running on an iPad

A container itself cannot do anything. It is not an application, but a sort of compartment

for an application (or a few applications) to run in. Natively, iOS applications are installed to

a device through an App Store, and can be launched from the home screen of the device. The

Mobile Development platform changes the paradigm by making iOS treat a container as an

app; the true applications lie inside the containers (as seen in Figure 1). This layer between

a Bank of America Merrill Lynch application and the native iOS platform mitigates the risk

of leaking or exposing data from the Mobile Development platform. This resembles the idea

of sandboxing (segregating apps into their own environment), already used in iOS. Further

security features of the platform (including network communications and file handling) are

beyond what I was exposed to, and would probably get me in trouble anyway.

The Mobile Development team has created a number of apps since the introduction of

the Mobile Development platform. These include:

“Good” App Used to interface with the Microsoft Exchange servers to give financial ad-

visors access to their email.

Client Financials / F360 Gives financial advisors a full spread of data on every account

for each of their clients.

7

Market Watch Provides consistently up-to-date information on markets around the globe.

Research Allows financial advisors to explore news and reports that may impact their

clients’ investments.

At the end of 2011, Bank of America Merrill Lynch took a survey of financial advisors

that use these iPad applications. This survey had a twofold purpose. First, the Mobile De-

velopment division was able to determine overall feedback on these applications. The results

were astoundingly positive, with especially positive results for the Client Financials applica-

tion1. Second, the Mobile Development division wanted to gauge what kind of applications

the financial advisors wanted to have available to themselves. The survey ended up collecting

data about eight potential products (including already-released applications). Among these

was a product that would allow advisors to access their business-related documents on the

iPad as well as on the desktop. This idea evolved in to Briefcase.

2.2 Wealth Management Workstation

Originally, financial advisors were limited to working on desktop workstations. These work-

stations utilized a software suite developed internally at Merrill Lynch knows as the “Wealth

Management Workstation”. The WMW contains a plethora of applications used by the

advisors, including those listed in Section 2.1. It also gives advisors the ability to move

around their clients’ assets and place orders with markets. The overall goal for the Mobile

Development division is to make all the features of the WMW available on the iPad.

Amoung the desktop applications is a service called FileBox. FileBox is used by advisors

to share documents with their clients. It is very similar to the popular public software known

as Dropbox2, but with limited capabilities and greater security. The Briefcase application is

1100% of users gave overall positive feedback for Client Financials, and over 90% were recommending the
application to other employees in different areas of the business.

2Found at: https://www.dropbox.com/about

8

essentially an extension of FileBox onto the iPad, with a few additional features.

2.3 Product Design

I was fortunate to come into the project early on. The design of the user interface had

already been fleshed out, and the head of the iPad team had just finished writing 50 lines of

introductory code; more of a testbed application than Briefcase itself. The structure of the

application had yet to be determined, so it took about a week or two of experimenting and

programming before the team had a design we were comfortable with.

Figure 2: The design flow for Briefcase (views and controllers have been abstracted)

Briefcase’s main purpose was to allow a financial advisor to sync important documents

between their iPad and desktop devices. A user should have the ability to delete, view

metadata (including date created, name, and client ID), and in the case of PDFs, view the

document itself. All changes must be synced with the desktop, and thus the application

would need to notify the FileBox servers of changes AND be able to receive changes made

from the desktop3. Since PDF documents had to be displayable, the server needed to be

able to provide the contents of documents as well as metadata.

Apple heavily encourages the use of the Model-User-Interface paradigm when program-

3We on the team forgot about the second part of this (receiving changes) until the last minute; it is
currently not implemented.

9

ming iOS applications. This separates the user interface from the underlying data structures

that make up the program, and allows them to interact with each other through controllers.

We incorporated this directly into the design of Briefcase, as can be seen in Figure 2. The

data was split into three different sections:

Document Manager The document manager’s job is to track all of the documents stored

in Briefcase (including their metadata). It provides the application’s UI with the

necessary document information and presents PDFs for viewing if needed.

Database Manager The database manager locally stores data associated with Briefcase

documents. The local database ideally reflects the same data that the FileBox servers

contain (plus additional local data). The database is especially useful for when Brief-

case is unable to sync with the FileBox servers, as it allows the data to be retained

and tracked until a connection is reestablished.

Sync Manager The sync manager is what interacts with the remote FileBox servers. The

FileBox servers act as the central data store for the app, containing documents and

their metadata. When syncing occurs, the sync manager sends information stored in

the local database to the FileBox servers, and also updates the local managers from

new data obtained from the FileBox servers.

The views for Briefcase were very simple. In fact, the entire application only consists of

three views. The first view is a login screen. For the time being, there is only a placeholder

login screen that does not do authentication against any sources. However, Bank of America

utilizes many forms of encryption that will be incorporated into the application before it

is released. The login associates Briefcase with a user account, allowing Briefcase to check

for appropriate documents. The main view for Briefcase is a very basic table, listing a few

select pieces of data to help the user identify each document. This list can be sorted through

10

tappable table headers. If the document is viewable (is a PDF), tapping its entry in the table

will bring up a fully interactive view of the document through a native iOS PDF viewer4.

2.4 Programming

Prior to the internship, I had no experience with programming for iOS, or even programming

with Objective-C (the language most commonly used to write iOS applications) in general.

The first week of the internship was spent going through tutorials and learning how to use the

Objective-C language. My coworkers pointed me to the Stanford Online courses; the video

lecture / slide combinations were very helpful in enforcing the new material. My coworkers

were eager to answer any question I had, and pointed me to specific topics that arise often

in the course of programming an application.

Historically, iOS Objective-C programming has made use of manual memory manage-

ment. This is implemented through a series of methods on every object; ‘retain’, ‘release’,

and ‘autorelease’. Calling retain an object causes its retain count to increase by one, and

calling release or autorelease causes the count to (eventually) decrease by one. When an

object has a release count of zero, the object is freed from memory.

NSObject* object = [[NAObject alloc] init]; // alloc automatically retains

[object retain]; // retainCount == 2

[object release]; // retainCount == 1

[object autorelease]; // after the app completes a ’cycle’, retainCount == 0

...

// object is freed from memory

Starting in iOS 5, the compiler takes advantage of a feature called Automatic Reference

Counting (ARC). ARC allows the compiler to track the retention of objects without the

4For security reasons, the Mobile Framework team is looking into creating a proprietary document viewer.

11

need to manually declare releases and retains. It is essentially a form of garbage collection,

but instead of the entire program getting swept for dereferenced memory, each object in

memory is freed (nearly) the moment it is dereferenced. While it was introduced in iOS 5,

ARC can be used for applications targeting iOS 4.3 and above.

Before Briefcase, the iPad team was writing all their code using manual memory man-

agement. As is custom in a large business environment, the team felt it too risky to update

their code to take advantage of ARC (if it ain’t broke, don’t fix it). The Briefcase prototype

was written with ARC, however, and those involved with writing the code felt that the new

memory management feature was a great boon. With the release of iOS 6, Bank of America

will no longer be supporting devices running anything earlier than iOS 4.3, meaning that

the entire Mobile Development division will be able to take advantage of ARC for iOS.

Apple almost requires that developers make use of their native tools for building iOS

applications. These tools are embedded in a program called “XCode”, which is an integrated

development environment specially configured for targeting Apple systems. In addition to

providing programming and code features, XCode embeds layout and storyboarding features

that allow a developer to visually design the user interface if they choose (as opposed to

programmatically). This makes it easy to update the UI of a program and control the flow

between different areas of an application.

Programming for iOS was a bit unlike any programming I had done before. The lan-

guage makes use of messaging; ‘messages’ are passed between objects (through method calls),

and many built-in objects have methods that allow themselves to handle data either syn-

chronously (blocking) or asynchronously (non-blocking). As Objective-C is based off of the

C language, every object in Objective-C is actually instantiated as a pointer to an object,

which is then allocated and initialized; a programmer will almost always be dynamically

allocating data to the heap. Unlike C, Objective-C abstracts object pointers to make them

feel more like regular objects (in addition to ARC), which is helpful for those uncomfortable

12

for dealing with pointers.

I do not believe that my manager or team was prepared for how quickly I would pick up on

iOS programming; the Briefcase prototype was completely finished within four or five weeks.

Unfortunately, Mobile Development was re-prioritizing the applications being developed, and

Briefcase was placed on the backburner for the time being. Still, the prototype met all of the

functionality required for the first stage of the product, and with a few minor modifications,

would be ready for testing and release.

3 ML Exchange (OSQA)

Since I finished my major project, Briefcase, much earlier than expected, my team and I

started looking for work outside of specifically iPad development that I would be able to

help with. Fortunately, Mobile Development was starting a new project nicknamed “Merrill

Exchange”.

In order to flesh out an idea for Merrill Exchange, many of us from different areas of

Mobile Development got together and discussed an idea for a website that would aggregate

knowledge from across the different development teams. The discussion quickly turned to

Stack Exchange based sites5. It was decided that we would implement our own Bank of

America Merrill Lynch version of Stack Exchange as a solution to the need for a knowledge

base.

Before the next meeting, I had a chance to discuss my feelings with the one of the leaders

of the project. I voiced my concern about the time it would take to build a Stack Exchange

site (which was to have MUCH of the current Stack Exchange features, including live chat,

user accounts, and a reward system), and proposed looking for a FLOSS (Free Libre Open

Source Software) solution that we could modify to fit our needs. The idea was given some

5Stack Exchange is a network of individual communities, each dedicated to serving experts in a specific
field. The sites contain libraries of high-quality questions and answers. http://stackexchange.com/

13

thought, and while everyone else worked on building a new site, I was assigned to track down

a FLOSS solution compatible with our platform and goals.

3.1 OSQA

OSQA (literally Open Source Q&A) is a Q&A site whose original design was based directly

from Stack Exchange. The software contains many features, including accounts, tags, voting,

‘badges’, and search6. The look and layout is very similar to Stack Exchange sites, which

makes it easy for users to migrate over and intuitive for new users to learn. This one one of

a few FLOSS Stack Exchange implementations I found, but this was the only one that was

met with approval by the project leaders.

OSQA runs on Django, which is a web framework for the Python programming language.

Bank of America Merrill Lynch does not use Python except for coding small tools, so no

one on the team had much experience with the language. My own knowledge of Python

was limited to self-contained, linearly-executing scripts of no real value. This would be the

second language I was largely exposed to during my time at Bank of America Merrill Lynch.

Many teammates were skeptical of the capabilities of Django and OSQA, so they continued

to develop the made-from-scratch version of Merrill Exchange, while I worked on setting up

OSQA in a virtual machine to prove its effectiveness.

3.2 Authentication

After just a few days, I was able to have OSQA up and running, completely with Merrill

Lynch branding and test questions. The only hurdle left was authentication. OSQA supports

a large range of authentication methods, including OpenID, local account creation, and

Lightweight Directory Access Protocol (LDAP). It was determined that no one would want

6Search was a very lofty goal for our design-from-scratch version of the site, almost considered unachiev-
able.

14

to use Merrill Exchange if they had to create an account. Since the site was to be hosted

within the Bank of America Merrill Lynch network, it would be easy to authenticate against

the company’s account servers. Thus, I started exploring authentication with LDAP.

LDAP is a protocol for storing and accessing a set of records for a number of users. An

entry in LDAP consists of some number of attributes, and each attribute has a name and

value(s).

dn: cn=John Doe,dc=example,dc=com

cn: John Doe

givenName: John

sn: Doe

mail: john@example.com

manager: cn=Barbara Doe,dc=example,dc=com

In the above example, one can see that a number of entries (distinguished name (dn), given-

Name, surname (sn), etc.) are associated with attributes (cn (relative distinguished name)

is associated with ‘John Doe‘, and dn is associated with a cn and two dn). Bank of America

Merrill Lynch already has many LDAP servers set up across many domains, against which

we were able to authenticate. However, there was a non-technical problem with this authen-

tication. In setting up LDAP, the company had chosen... ‘less than desirable’ names for the

LDAP entries. Many entry names did not match up with standard LDAP Data Interchange

Format field names, and some entries had completely irrelevant names (e.g., the email ad-

dress entry was named something to the effect of ‘entry (1)’). Nobody (at least nobody we

came into contact with) in Mobile Development knew how to interpret the LDAP entries,

and we were unable to decode enough of them to create a reliable login and account system

for OSQA.

The backup plan to LDAP that we ended up having to implement was to use HTTP

POST methods. This way of authenticating was rather undesirable, but was all that was

15

available to us at the time. What would happen is the user would be taken to a site,

where they would login with their standard Bank of America ID and password. This site

would redirect them to the Merrill Exchange OSQA site; the redirect would contain the

information needed by the site (name, email, etc.) in the body of the HTTP message (JSON

encoded). This authentication method did work for us, and is currently what the site uses

to authenticate users. When I left at the end of my 10 weeks, the site was nearly complete;

a few team members were still working on a chat page, and the site was still hosted on a

private virtual machine.

The OSQA site gave me a solid amount of experience with web-based protocols and ideas.

I learned about HTTP GET and POST methods, types of data encoding, LDAP structure,

and how servers handle web requests and return data to a requester. I have been planning

to look more into the HTTP protocol and see what capabilities it has, and have grown to

love python for prototyping programs and writing smaller pieces of software.

4 UI Automation

With two or three weeks left to go, I again had little work to do. Briefcase was still in limbo,

and Merrill Exchange had little work left to be done on it. At this point, I had been playing

with JavaScript in my spare time. As I was on the iPad team, my manager wanted me to

continue work on the iOS platform, but there was little for me to do in such a short time

frame. Fortunately, I learned that someone on another team had been experimenting with

automating quality assurance testing on the iPad through JavaScript. This was the perfect

opportunity for me to use my newly-learned JavaScript skills to help reinforce what I had

done on the iPad.

Apple provides a framework for the automation of UI testing. It is one of many tools

(called ‘Instruments’) contained within XCode that allows developers to examine their appli-

16

cations leaks, bugs, and resource usage. UI Automation is used to run the program without

the need for user interaction. UI scripts can push buttons, move sliders, fill out forms, swipe

the device screen, and even close an application. The output from the program ranges from

success/fail messages, to a top-down list of all the UI elements for a particular view of the

application. It takes advantage of the accessibility options associated with UI elements (the

name of a navigation bar, for instance). With just a few small scripts, a developer can create

a UI Automation test that visits every view of their application, checks for proper behavior,

then exits with a log of every error that might have occurred.

The UI Automation tool in particular isn’t well-advertised, in large part due to the lack of

documentation provided by Apple7. It took a few days for me to really get started working on

the automation; online tutorials were incomplete or uninformative for someone just starting

out, save for a few hard-to-find guides. Once I started writing my own UI scripts, things

started to feel familiar. JavaScript is uncompiled and runs in a linear fashion, making it

easy to follow and change the path of the script as it iterates through the user interface.

I had multiple interactions with coworkers who weren’t afraid to tell me exactly how they

felt about the quality of feedback they’d receive from Quality Assurance tests, so the need for

automated tests was twofold in that it would decrease the heavy workload on QA testers, and

also provide more detailed, programmaticfeedback for developers. The hardest part about

UI Automation at Bank of America Merrill Lynch was the lack of coordination between the

application developers and those working on UI Automation. If UI scripts cannot determine

the ‘name’ or identity of a UI element, they have to determine it from it’s position on screen

(represented by an array or nested array). If the layout of the screen changes (say a button

is added), this can completely break the script. The developers were not adding most of the

accessibility features to the UI design, so the UI scripts are very brittle and may break if a

7Apple provides no high-level documentation on UI Automation; the only documentation they have is a
detailed list of the JavaScript classes used by UI Automation.

17

feature is added/removed. Hopefully, if the UI Automation way of testing takes hold, the

iPad developers will concentrate more on adding these additional UI features.

5 Community

Over my 10 weeks, I had the opportunity to be involved in a number of events at and related

to Bank of America Merrill Lynch. The internship coordinators were very active in getting

the interns involved in a multitude of programs, and my hiring division even held an event

or two.

5.1 Summer Intern Programs

The Summer Analyst Program coordianters had organized a few events to give us interns

an idea of what Bank of America Merrill Lynch was like on a professional and personal

level. Every couple weeks, all the interns from around the country were invited to attend

live events (usually through webcasts) given by high-ranking members of the company, who

would speak about different topics such as diversity, communication, and motivation. One of

these presentations was split between the New York offices and the Hopewell branch at which

I worked. We were given the opportunity to talk with senior managers and ask them about

their rolls in the company and how they view Bank of America’s future. It was a wonderful

experience to learn from those who have been with the company for a long time and know

the culture. I was also given the opportunity to meet with the hiring managers during one

of these events. They were eager to share about what kinds of schools they target and what

they tend to look for when recruiting. I was also informed that the internship program is

considered very competitive, something I had heard before, but hadn’t really had a chance

to notice before meeting with the other interns at these events.

In addition to the official, on-campus events, the internship coordinators had set up a

18

few fun after-work networking events for us at the Hopewell branch. These were events such

as bowling, going to a baseball game, and community service. The intern group this year

was very diverse, and there were people working not just in technology, but in business and

finance. At once such event, the new hires were also invited to discuss what it is like working

full time at the company. Having the opportunity to discuss what kinds of work each of us

did gave me a better view of the what kind of work makes Bank of America Merrill Lynch

the powerhouse that it is today. Every intern I talked to had drive and passion (to some

degree) for their work. At this point, it was easy to see why the internship program has been

called ‘competitive’.

5.2 Lunch ’n Learn

Halfway through my time at the company, Mobile Development decided to give an informa-

tive presentation during lunch in one of the large conference rooms above the main dining

hall. The idea was to give all the employees on campus a chance to see what Mobile Develop-

ment was working on, and to hopefully get them excited about past performance and things

to come. My team gave a presentation about the iPad apps that have been developed, and

what was in the works (including Briefcase). It was interesting to see the variety of people

who showed up to the presentation. There were many financial advisors, who were very sat-

isfied with the current selection of iPad apps and eager to see what would be coming down

the pipe next. There were also developers from other teams, such as the mainframe group,

who were interested in mobile development and wanted to get a taste of what the mobile

teams worked on. The presentation helped me see the scope of the Mobile Development

division.

19

5.3 Internship Presentation

As a requirement for the internship program, I had to give a presentation to a select group

of people at the company, demonstrating what I had worked on during the summer. This

was a great opportunity for me to start preparing for this paper and college presentation.

I was a bit surprised at how disorganized the process of presenting was. Every intern was

supposed to give a 30-minute presentation, but they all had to be scheduled within the same

week. This led to confusion over whether or not the internship coordinators would be able

to attend everyone’s session, and in the end, some people, including myself, only presented

to their manager and those on their team. I was surprised that the hiring manager had not

anticipated this, and they handled the situation poorly. My presentation was well received

by those who attended and helped remind me of some of the details of what I had done thus

far.

6 Conclusion

Overall, my work at Bank of America Merrill Lynch was a very fulfilling experience. I was

exposed to a plethora of new technologies that I most likely would have never experienced if

it weren’t for my time at the company. The people I met gave me the opportunity to form

invaluable new professional relationships.

That being said, I do not think I would go back to work for Bank of America. I was

told by many people time and again that the company has a spread of technologies, and

that there are opportunities for everyone. I do not believe, however, that the kind of work

I want to do is something that Bank of America involves themselves in. The career I wish

to follow involves working close to hardware, and this is not an experience Bank of America

can properly provide for someone with such interests. On top of my interests, I am not sure

I enjoy working in such a large institution. I was blessed with working on a small team, but

20

I was always reminded of just how many people work for a company like Bank of America.

It made me almost feel less satisfied with my work, like I wasn’t able to contribute much as

just one person. This may be compounded by the fact that I was just an intern, but it is

still something to think about. I was offered a position as an intern for next summer, but

I do not believe I will be accepting. I wish to gain experience in other areas of computer

science more relevant to my interests, and will try my luck at another company next year.

References

[1] Bank of America — History. http://en.wikipedia.org/wiki/Bank of america#History.
Accessed: 15/08/2012.

[2] Bank of America Merrill Lynch. http://en.wikipedia.org/wiki/Bank of America Merrill Lynch.
Accessed: 15/08/2012.

[3] Former Merrill Lynch 450-acre campus in Hopewell to be sold under Bank of America
plan.

[4] Merrill Lynch — History. http://en.wikipedia.org/wiki/Merrill Lynch#History. Ac-
cessed: 15/08/2012.

[5] Robert Ballecer. This Week in Enterprise Tech: Ep. 3. Podcast, 2012.

21

