
1

Optimized Performance of Web Applications

GLEN OAKLEY, CSC260-01, The College of New Jersey

DR. M. PULIMOOD, Instructor

Web Applications are a breed of programs that are designed to be lightweight and run across a network.

Due to recent advances in technology, Web Applications are gaining both popularity and function with

developers and consumers alike. As with all platforms, there are many different facets of developing and
deploying a Web Application. Prominent among these is an analysis of the processing power required to

drive the application. This report will attempt to address some of the issues that arise when developing for
a web-based platform, focusing on concerns with overall performance and the distribution and utilization

of processing power.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Techniques—Web-Based Ap-
plications

General Terms: Design, Performance

Additional Key Words and Phrases: Web Application, Web Development, Networking

1. INTRODUCTION

The term “Web Application” (also knows as “WebApp”) is used to refer to a program or
application that is accessed through a network. The workload is shared between the client
accessing the application and the server presenting the application. The client usually han-
dles front-end elements such as the user interface and light calculations, while the server
handles back-end elements, i.e. database queries and resource-intensive calculations. Web
applications are diverse; a WebApp could be as simple as static HTML files that present
basic information, or as grandiose as dynamically-changing web pages that update auto-
matically and interact with other users.[Pressman 2010]

2. CHARACTERISTICS OF WEB APPLICATIONS

2.1. Notability

WebApps have become popular due to the persistence of Internet browsers; the web is a
platform available to a large percentage of the population, and has a single standard that is
maintained across many different architectures and operating systems. The permeability of
WebApps benefits both producers and consumers; the former is able to create an application
that can be deployed to a single platform, while the latter can easily access that application.

2.2. Technology

The foundation of a WebApp lies with the HyperText Markup Language (HTML), Cascad-
ing Style Sheets (CSS), and JavaScript, which give these applications structure, formatting,
and function, respectively.[W3C 2012] Many languages had been created or adapted to en-
hance the features of WebApps, including PHP for dynamic pages[PHP-Group 2012], Ajax
for real-time client-server communication[Ullman and Dykes 2007], and Java servlets for
extending the features of a typical client-server communication model[Bodoff 2012]. There
are numerous technologies such as these, each of which has many features that overlap with
others. It is up to the developer to determine the best language(s) to use in developing
his or her application, and there have been many studies done on the benefits of different
languages and platforms.[Prechelt 2011]

The original content of this document is protected under the GNU Free Documentation License v1.3.
Copyrights for components of work owned by others must be honored. Abstracting with credit is permitted.
c©2012 The Elucidator / The College of New Jersey

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.



1:2 Glen Oakley

2.3. Issues

The apparent simplicity of WebApps to an end user is misleading; the nature of web ap-
plications lends itself to a host of problems and complications. These issues and more are
subjects that must be addressed when creating a WebApp, and may affect a developer’s de-
cision to use this platform. While some issues are largely outside of the developer’s control,
proper design and programming practices can help prevent many problems from arising.

There are a whole host of issues that become relevant when dealing with an application
that runs over a network, including security vulnerabilities in client-server communication,
transparency as it relates to a user’s data (which is usually trapped on a server and inacces-
sible to a user outside of the application), and server-side errors and complications outside
of a user’s control that may disable a WebApp. Complications related to the structure of
the network on which the application is run are beyond the scope of this paper.

2.4. Application Processing Power

Most Web Applications are run through a user’s web browser or custom-designed web
interface; the resources for a web browser are much more limited than a typical platform,
and thus the client-side computations are much more limited on this platform.[Okamoto
and Kohana 2010] Additionally, that massive amount of usage a web application may incur
must be handled by the backend server; combined with the low-end processing power of the
client, this forces a developer to invest in a stable (and potentially costly) server solution,
one that is much more powerful than might be necessary with a application on a different
platform.

When designing a Web Application, one must remember these limitations. The most
important thing to consider is whether a program can even be designed as a WebApp. A
program that relies heavily on local resources would not be suitable as a WebApp (such as a
Computer-Aided Drafting program). Web Applications are not designed to access those low-
level components that enable powerful computing, such as a client’s underlying operating
system and hardware, so program such as file trackers and hardware monitors could never
be made as WebApps. Once the appropriateness of the application as a WebApp has been
established, concerns with implementation must be address.

3. PROCESSING DISTRIBUTION

As Web Applications are all supported by a server1, it is important to ensure that the server
is able to handle the workload incurred by the application. An important factor in this is
scalability; as interest and use of an application grows, more instances of that application
will be running at one time, which in turn will force the server to process more data. Indeed,
it is possible for a server to reach a point at which it cannot process the incoming data as
fast as it would on a smaller scale. The results are noticeable to the user in the form of
response latency.

Latency can be a killer for applications; users expect ’immediate’ responsiveness from an
application. If a user feels a program does not consistently respond within a reasonable time
limit, they will react negatively, possibly abandoning the application for an alternative so-
lution.[Selvidge 2002] Upgrading the server referenced by a Web Application is a possibility,
however the overhead of this can be very large depending on the current size of the server.

A largely effective solution to the problem of scalability is using a technique known as
load distribution. Load distribution is often used on the server level to distribute a single
problem across multiple servers, letting each server handle a different block of data. Again,
this may present a problem in which a single server is forced to process a large or complex

1In this paper, the general term “server” will be used to refer to either a single computer or collection of
computers that perform data processing on the backend for a client-server application.

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.



Optimized Performance of Web Applications 1:3

chunk of data, causing the entire system to bottleneck. A potentially better distribution
solution lies in web workers.

3.1. Web Workers

Web workers are scripts executed by a web page. These scripts run in the background and
are independent of the other scripts related to their parent web page, as well as independent
of each other. There are a number of marked benefits to this method of load distribution:

— Web workers are native to modern-day web browsers, the platform of Web Applications,
meaning that there are no extra packages or services to install or configure in order to
enable web workers. This makes them an ideal solution for developers, who need not deal
with a setup process before their application is allowed to run.

— Web workers can be instantiated on the client side, allowing the application to take ad-
vantage of spare processing power available on the user’s computer.

— The threaded nature of web workers allow networked data requests to be executed fully
asynchronously (that is, the application will not ’hang’ while waiting for a response).

Possibly one of the largest benefits for developers is this: Web workers can distribute the
data-crunching needed by an application across its clients, reducing the processing power
required by the application’s server, thus reducing the monetary and time costs to the
developer.

Fig. 1. CPU usage of a testbed web-based video game as a function of the number of users (avatars) on
both a low-end (left) and high-end (right) server.[Okamoto and Kohana 2010]

A case study done at SEIKEI University in Japan involved implementing web workers
in a web-based video game and measuring the difference in performance (see Figure 3.1).
Past the 20 user mark, as the number of users increased, the difference in performance be-
tween a version of the application implementing web workers and version not implementing
them increased at a fairly constant rate, with the web worker model requiring less CPU
usage.[Okamoto and Kohana 2010] There is a marked benefit to using the processing power
of a client to handle calculations normally computed by the server.

There are, of course, possible detriments to using web workers. Instantiating too many
web workers requires a large amount of client-side processing power, perhaps more than a
specific client could handle, causing the application massive slowdown or halting execution
completely. An overabundance of web workers also presents a problem with concurrent
edits. For instance, if two or more web workers attempt to simultaneously edit a web page’s

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.



1:4 Glen Oakley

DOM2, the results of the edit will be unexpected, and almost certainly different than what
the developer/user intended. A developer must be conservative in the use of web workers,
and keep in mind the limited systems that their application may be run on.

4. NETWORK COMMUNICATION

Network communication can be a difficult challenge to overcome for developers. Networks
depend on a host of different devices and software in order to function properly, and thus
can be unpredictable and encounter problems outside of an application’s control.

One such issue is with bandwidth. For developers creating an application for use on an
internal network or intranet, this is much less of an issue, as the scope of such a program is
within a company or organization. However, when scaling up to an application designed to
run on the Internet, a developer has to assume that at some point, there will be a slowing or
interruption in communication over that network. The application must be designed with
this problem in mind.

4.1. Compression

One solution to the problem of network communication speeds is to use compression. With
this method, the data being sent across a network is packaged into a condensed form and
then unpacked when it reaches the client. The client receives the same information it would
without compression, but due to compressed data having a smaller footprint, the data is
able to reach the client faster.

Fig. 2. The size and download time of compress and uncompressed files[Al Fararjeh and Abu Jabal 2010].

Figure 4.1 shows clear benefits in network performance while using compression. The
amount and time of processing power required to uncompress on the client side is nearly neg-
ligable, making compression an ideal solution for speeding up Web Applications.[Al Fararjeh
and Abu Jabal 2010]

4.2. Asynchronous JavaScript

At their disposal, a developer has a few basic tools that a client system is guaranteed to have
available. Among these is JavaScript, a language implemented by all web browsers and used
for scripting. JavaScript is able to handle networked requests in two ways; synchronously
or asynchronously. After making an HTTP request, the former method of requesting will
cause the script to wait for all of the requested data to be returned to the client or for a
timeout to occur before continuing operation[Al Fararjeh and Abu Jabal 2010]. If a network

2The Document Object Model refers to the structure of a web page, consisting of a root document object
and its children (who themselves have children, etc.). Changes to the DOM are reflected in the content of
a web page and the way it is displayed.

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.



Optimized Performance of Web Applications 1:5

is running slowly, this will cause a massive runtime slowdown, depending on the amount of
requests the application must make.

A much better alternative is to use the asynchronous requests. This will allow the applica-
tion to continue execution while the request is being processed and delivered; the application
need not wait for the request to be downloaded. In JavaScript, this method of requesting is
known as Ajax[Al Fararjeh and Abu Jabal 2010]. Not only will Ajax prevent an application
from halting for networked requests, but invalid requests or missing results can be handled
in realtime instead of causing the program to hang.

An Ajax request is created in JavaScript using a special object whose type is XML-
HttpRequest. This is very similar to the typical HTTP request, with the major difference
that when the request is sent, the web page that is parent to the request need not change or
refresh; the request will be completely invisible on the front-end. The format of the requests
depends on what handler is expected to process the request on the server side; different
languages require different request formats. In addition to a request, Ajax also requires a
‘callback method’: A function that will be called after a response is obtained. When the
server receives an Ajax request, it builds a response. The response type is not specified by
the Ajax request, so the application must know what to expect from the server3. Once the
response has been built, the server returns the generated response to the point in the Web
Application where it was called from. Upon receiving a response, Ajax calls the callback
method assigned to the original request, which can then process the data.[Albert et al. 2008]

There are a few downfalls of using Ajax. It is very important that the server response is
checked before the application begins processing the data. It is very possible that, given a
‘large’ number of users, the number of Ajax requests the server needs to process could cause
a race condition4 that may halt the server or cause it to crash[Albert et al. 2008]. This is
not limited to the server side; as with web workers (Section refsec:webwork), it is possible
that two callback methods will both operate on the same object, causing unexpected and
unwanted results. Ajax should be implemented with caution, and a developer should be
aware of the possible race conditions that may form as a result of too many asynchronous
requests.

4.3. Peer-to-Peer Connections

A style of networking exists in which the idea of a server has been completely removed from
the process; peer-to-peer (p2p) communications are a style of networking in which data is
sent from client-to-client with no server to process or redirect the messages. A decentralized
model such as this completely eliminates the need for a server, which would need to be
consistently maintained by the developer or related parties.[Schollmeier 2001]

There are, of course, drawbacks to this type of distribution. Each client must sacrifice
part of its resources, such as extra disk space, processing power, and bandwidth. For some
applications, this may be a trivial amount of resources, but this becomes unfeasible for ap-
plications with features such as a large persistent database (Where would the main database
be stored? See Section 5.1). The performance of a p2p system is entirely dependent on the
number of users. That is, a p2p system with a small number of running clients will be much
less effective than one with a relatively large number. Removing a central server also dis-
ables some of the convenient features of Web Applications, such as always being inherently
up-to-date.

Peer-to-peer Web Applications are not feasible for a large number of applications. An
application should not be forced into this model, as the results of such actions could cause

3Though the Ajax request is officially typed as an XML request, the response from the server could be of
any format, such as XML, HTML, or JSON.
4A race condition is whcn two processes try to access the same resource, or when two processes executing
in parallel are dependent on each other.

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.



1:6 Glen Oakley

Fig. 3. A server-based application compared to a p2p-based application[Bieg 2007].

large problems for the application, user, and developers. For an appropriate program, how-
ever, a p2p system has the potential to remove the need for a large server or high bandwidth,
and could be very cost-saving.

5. LONG-TERM STORAGE

For many applications, user-generated data must be stored long-term for access at a future
point in time. This allows for data persistence in the event that the application halts oper-
ation on either the client or server side. The developer of a Web Application is presented
with a few options for storing data indefinitely.

5.1. Databases

Databases are used in applications to store data in an easily accessible manner over long
periods of time, for access at a later date. Databases are very valuable to a developer, as
they usually store data in a way that allows for quick access using a set of algorithms. Most
applications rely heavily on databases, as they allow large amounts of data to be cached
in permanent storage instead of in memory (caching all data in memory is unfeasible for
large-scale applications).

A typical Web Application will execute the following procedure many times during its
lifespan[Li et al. 2003]:

(1) The application sends a request from the client to the server in order to obtain data.
(2) The server looks in its cache (memory) for the requested information.
(3) If the information is not found, the server requests the information from its database(s).
(4) The information is returned to the client, who uses it as needed.

Ideally, the server has a large enough cache that a large amount of its requests do not
need to directly query the database; database (disk) reads are much slower than reading
from memory. Since cache is located in the memory, reading from the cache instead of the
database(s) greatly improves the performance of an application.

The underlying structure of a database is often of little importance to a developer. There
are a large number of different database structures to choose from, a number of which
perform at very similar, high levels. A developer will almost always implement a database
that has already been developed, as the overhead of designing a new database for a specific
application is unfeasibly high. This is especially true for Web Applications, which can take
advantage of a number of database management systems (DBMS) created specifically for
web-based languages and scripts (see Figure 5.1).

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.



Optimized Performance of Web Applications 1:7

Fig. 4. A sample database interaction, using the JavaScript language[Redora ]. The web server parses data
from the browser and stores/retrieves information in the database.

Since database reads are relatively slow operations, a developer must be concerned with
choosing optimizing their interaction with a database. Data stored inside of a database is
accessible through ‘queries’. A typical database will handle a multitude of different queries
in a short amount of time. Not only do different DBMS have syntactical differences in the
way queries are formulated, but they each handle the ’stack’ of queries in different ways.
The DBMS and database itself are tasked with scheduling and executing the queries in the
best way possible[Ahmad et al. 2008]. In order to obtain the best performance, however,
the queries must be written in an optimal way, i.e. they should not contain extraneous
commands or information (though many DBMS are able to detect and remove these). It is
also in the best interest of the developer to group multiple requests into a single query, if
possible. This reduces the number of queries the database needs to process, and can cause
a measurable difference in database (and thus application) performance.

5.2. Cookies

Cookies are sets of formatted data that are received by a client from a server and stored
in the client’s persistent storage. It can be quite beneficial to a developer to allow some of
the user’s data to be stored locally on their own machine, instead of forcing the server to
categorize and handle that data.

Unfortunately, this also gives users direct control over the cookies. A large number of
Internet users have been programmed to think that cookies are intrusive and even malicious
(some are), and popular web browsers have been designed to control the storage of cookies
very carefully[Millett et al. 2001]. A user may decide to delete the cookies that the developer
is using to store data. Thus, important long-term and sensitive information should still be
stored on the server side of the Web Application. It is up to the developer to determine the
trade-off between data security and server capacity.

6. CONCLUSION

This paper discussed some of the ideas and methods behind developing optimized web ap-
plications. The raw processing power required by a server can be mitigated by using client
computers for calculations, and implementing web workers in an application can further in-
crease the speed at which calculations can be carried out. A major factor in the performance
of networked applications in general is network communication speed. Compressing data al-
lows for smaller transfer times between network nodes, while asynchronous data requests
(such as Ajax) can trickle data back and forth between the server and client, eliminating the
need for an application to transfer periodic large bursts of information. Developing an ap-

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.



1:8 Glen Oakley

propriate, well-designed peer-to-peer platform can eliminate the need for complicated tasks
such as server maintenance. Using suitable long-term storage methods can further increase
the throughput of data for an application. It is important for a developer to utilize these
methods wisely, and not abuse them, which leads to problems in itself.

REFERENCES

Ahmad, M., Aboulnaga, A., Babu, S., and Munagala, K. 2008. Modeling and exploiting query interac-
tions in database systems. In Proceedings of the 17th ACM conference on Information and knowledge
management. CIKM ’08. ACM, New York, NY, USA, 183–192.

Al Fararjeh, A. M. and Abu Jabal, A. M. 2010. Recommendations to improve performance of an
enterprise web-based application. In Proceedings of the 1st International Conference on Intelligent
Semantic Web-Services and Applications. ISWSA ’10. ACM, New York, NY, USA, 29:1–29:6.

Albert, T. J., Qian, K., and Fu, X. 2008. Race condition in ajax-based web application. In Proceedings
of the 46th Annual Southeast Regional Conference on XX. ACM-SE 46. ACM, New York, NY, USA,
390–393.

Bieg, M. 2007. Networking diagrams.

Bodoff, S. 2012. Java servlet technology. Website. http://java.sun.com/j2ee/tutorial/1 3-
fcs/doc/Servlets.html.

Li, W.-S., Po, O., Hsiung, W.-P., Candan, K. S., and Agrawal, D. 2003. Engineering and hosting
adaptive freshness-sensitive web applications on data centers. In Proceedings of the 12th international
conference on World Wide Web. WWW ’03. ACM, New York, NY, USA, 587–598.

Millett, L. I., Friedman, B., and Felten, E. 2001. Cookies and web browser design: toward realizing
informed consent online. In Proceedings of the SIGCHI conference on Human factors in computing
systems. CHI ’01. ACM, New York, NY, USA, 46–52.

Okamoto, S. and Kohana, M. 2010. Load distribution by using web workers for a real-time web applica-
tion. In Proceedings of the 12th International Conference on Information Integration and Web-based
Applications &#38; Services. iiWAS ’10. ACM, New York, NY, USA, 592–597.

PHP-Group. 2012. Php: Hypertext preprocessor. Website. http://www.php.net/.

Prechelt, L. 2011. Plat forms: A web development platform comparison by an exploratory experiment
searching for emergent platform properties. IEEE Trans. Softw. Eng. 37, 95–108.

Pressman, R. S. 2010. Software Engineering: A Practitioner’s Approach 7th Ed. McGraw-Hill, New York,
New York.

Redora. Javascript db interaction.

Schollmeier, R. 2001. A definition of peer-to-peer networking for the classification of peer-to-peer architec-
tures and applications. In Peer-to-Peer Computing, 2001. Proceedings. First International Conference
on. 101–102.

Selvidge, P. R. 2002. The world wide wait: Effects of delays on user performance. International Journal
of Industrial Ergonomics 29.

Ullman, C. and Dykes, L. 2007. Beginning Ajax 1st Ed. Wrox.

W3C. 2012. World wide web consortium standards. Website. http://www.w3.org/standards/.

Received March 2, 2012; revised March 23, 2012; accepted

The Elucidator, Vol. 1, No. 1, Article 1, Publication date: April 2012.


